69 research outputs found

    Mechanically reconfigurable microstrip lines loaded with stepped impedance resonators and potential applications

    Get PDF
    This paper is focused on exploring the possibilities and potential applications of microstrip transmission lines loaded with stepped impedance resonators (SIRs) etched on top of the signal strip, in a separated substrate. It is shown that if the symmetry plane of the line (a magnetic wall) is perfectly aligned with the electric wall of the SIR at the fundamental resonance, the line is transparent. However, if symmetry is somehow ruptured, a notch in the transmission coefficient appears. The notch frequency and depth can thus be mechanically controlled, and this property can be of interest for the implementation of sensors and barcodes, as it is discussed

    Microwave sensors based on symmetry properties of resonator-loaded transmission lines

    Get PDF
    This review paper is focused on the design of microwave sensors using symmetry properties of transmission lines loaded with symmetric resonators. The operating principle of these sensors is presented and then several prototype devices are reported, including linear and angular displacement sensors and rotation speed sensors. The main advantage of the proposed sensors is the robustness against changing environmental conditions

    Angular displacement and velocity sensors based on electric-LC (ELC) loaded microstrip lines

    Get PDF
    Planar microwave angular displacement and angular velocity sensors implemented in microstrip technology are proposed. The transducer element is a circularly shaped divider/combiner, whereas the sensing element is an electricLC resonator, attached to the rotating object and magnetically coupled to the circular (active) region of the transducer. The angular variables are measured by inspection of the transmission characteristics, which are modulated by the magnetic coupling between the resonator and the divider/combiner. The degree of coupling is hence sensitive to the angular position of the resonator. As compared with coplanar waveguide angular displacement and velocity sensors, the proposed microstrip sensors do not require air bridges, and the ground plane provides backside isolation

    The Beauty of Symmetry: Common-mode rejection filters for high-speed interconnects and balanced microwave circuits

    Get PDF
    Common-mode rejection filters operating at microwave frequencies have been the subject of intensive research activity in the last decade. These filters are of interest for the suppression of common-mode noise in high-speed digital circuits, where differential signals are widely employed due to the high immunity to noise, electromagnetic interference (EMI) and crosstalk of differential-mode interconnects. These filters can also be used to improve common-mode rejection in microwave filters and circuits dealing with differential signals. Ideally, common-mode stopband filters should be transparent for the differential mode from DC up to very high frequencies (all-pass), should preserve the signal integrity for such mode, and should exhibit the widest and deepest possible rejection band for the common mode in the region of interest. Moreover, these characteristics should be achieved by means of structures with the smallest possible size. In this article, several techniques for the implementation of common-mode suppression filters in planar technology are reviewed. In all the cases, the strategy to simultaneously achieve common-mode suppression and all-pass behavior for the differential mode is based on selective mode-suppression. This selective mode suppression (either the common or the differential mode) in balanced lines is typically (although not exclusively) achieved by symmetrically loading the lines with symmetric resonant elements, opaque for the common-mode and transparent for the differential mode (common-mode suppression), or vice versa (differential-mode suppression).MINECO, Spain-TEC2013-40600-R, TEC2013-41913-PGeneralitat de Catalunya-2014SGR-15

    Selective mode suppression in microstrip differential lines by means of electric-LC (ELC) and magnetic-LC (MLC) resonators

    Get PDF
    CIMITECIn this paper, it is demonstrated that the so-called electric-LC (ELC) resonators, and their dual counterparts, the magnetic-LC (MLC) resonators, are useful for the selective suppression of either the differential or the common mode in microstrip differential lines. The key point to mode suppression is the alignment of the resonator with the electric (differential mode) or magnetic (common mode) wall of the line. It is shown that by simply rotating the resonators 90∘ we can selectively choose the suppressed mode in the vicinity of the resonator's fundamental resonance frequency. The theory is validated through full-wave electromagnetic simulation, the lumped element equivalent circuit models of the proposed structures and experimental data

    Spectral signature barcodes based on S-shaped split ring resonators (S-SRRs)

    Get PDF
    In this paper, it is shown that S-shaped split ring resonators (S-SRRs) are useful particles for the implementation of spectral signature (i.e., a class of radiofrequency) barcodes based on coplanar waveguide (CPW) transmission lines loaded with such resonant elements. By virtue of its S shape, these resonators are electrically small. Hence S-SRRs are of interest for the miniaturization of the barcodes, since multiple resonators, each tuned at a different frequency, are used for encoding purposes. In particular, a 10-bit barcode occupying 1 GHz spectral bandwidth centered at 2.5 GHz, with dimensions of 9 cm2, is presented in this paper

    Miniature Microwave Notch Filters and Comparators Based on Transmission Lines Loaded with Stepped Impedance Resonators (SIRs)

    Get PDF
    In this paper, different configurations of transmission lines loaded with stepped impedance resonators (SIRs) are reviewed. This includes microstrip lines loaded with pairs of SIRs, and coplanar waveguides (CPW) loaded with multi-section SIRs. Due to the high electric coupling between the line and the resonant elements, the structures are electrically small, i.e., dimensions are small as compared to the wavelength at the fundamental resonance. The circuit models describing these structures are discussed and validated, and the potential applications as notch filters and comparators are highlighted

    Common-mode suppressed differential bandpass filter based on open complementary split ring resonators fabricated in microstrip technology without ground plane etching

    Get PDF
    A differential (or balanced) bandpass filter based on open complementary split ring resonators (OCSRRs) coupled through admittance inverters is presented in this article. Pairs of OCSRRs are symmet- rically placed in a mirror configuration between the strips of the differential line and are modeled by means of two series connected parallel resonators. For the differential (odd) mode, there is a virtual ground at the connecting plane between the OCSRR pairs, and the structure is roughly described by the canonical model of a bandpass filter, consisting of a cascade of shunt resonators coupled through admittance inverters. It is demonstrated that, through a proper design of the OCSRR stages, the common mode noise in the vicinity of the differential filter pass band can be efficiently suppressed. Due to the differential mode operation of the filter, it is not necessary to incorporate metallic vias to ground the OCSRRs. Moreover, as compared to other differential filters based on OCSRRs, defected ground structures are not present in the proposed filters. To illustrate the potential of the approach, two balanced bandpass filters are designed, fabricated, and characterized

    Recent advances in the modeling of transmission lines loaded with split ring resonators (SRRs)

    Get PDF
    This paper reviews the recent advances in the modeling of transmission lines loaded with split ring resonators (SRRs). It is well known that these artificial lines can exhibit a negative effective permeability in a narrow band above the SRR fundamental resonance, providing stopband functionality. By introducing shunt inductive elements to the line, the stopband can be switched to a pass band with left-handed (LH) wave propagation. For the design of microwave circuits based on these artificial lines, accurate circuit models are necessary. The former circuit model of SRR-loaded lines was presented more than one decade ago and is valid under restrictive conditions. This paper presents the progress achieved in the modeling of these artificial lines during the last years. The analysis, restricted to coplanar waveguide (CPW) transmission lines loaded only with SRRs (negative permeability transmission lines), includes the effects of SRR orientation, the coupling between adjacent resonators, and the coupling between the two SRRs constituting the unit cell. The proposed circuit models are validated through electromagnetic simulation and experimental data. It is also pointed out that the analysis can be easily extended to negative permittivity transmission lines based on complementary split ring resonators (CSRRs)

    Two-dimensional displacement and alignment sensor based on reflection coefficients of open microstrip lines loaded with split ring resonators

    Get PDF
    A two-dimensional displacement and alignment sensor is proposed based on two open-ended transmission lines, each loaded with a split ring resonator (SRR). In this arrangement, the depth of resonance-induced notches in the reflection coefficients can be used to sense a displacement of the loading SRRs in two orthogonal directions. Since the operation principle of the sensor is based on the symmetry properties of SRR-loaded transmission lines, the proposed sensor benefits from immunity to variations in ambient conditions. More importantly, it is shown that in contrast to previously published metamaterial-inspired two-dimensional displacement and alignment sensors, the proposed sensor can be operated at a single fixed frequency. The concept and simulation results are validated through measurement
    • …
    corecore